DSN Progress Report 42-48

September and October 1978

Evaluation of the DSN Software Methodology

A. lrvine
TDA Engineering Office

M. McKenzie
TDA Planning Office

This article describes the effects of the DSN software methodology, as implemented
under the DSN Programming System, on the DSN Mark III Data Subsystems Implementa-
tion Project (MDS). The software methodology is found to provide a markedly increased
visibility to management, and to produce software of greater reliability at a small decrease
in implementation cost. It is also projected that additional savings will result during the
maintenance phase. Documentation support is identified as an area that is receiving fur-

ther attention.

I. Introduction

This article describes the quantitative and qualitative effects
of the software methodology (Ref. 1) as implemented under
the DSN Programming System, on the DSN Mark IIl Data
Subsystems Implementation Project (MDS). The period in the
life cycle of the MDS that was studied extended from Sep-
tember 1974 through November 1976. During this period,
approximately 100,000 lines of application code were
delivered as well as diagnostic and system software.

The scope of this article covers the implementation of the
approximately 100,000 lines of application code that can be
directly allocated to the following subsystems:

DCD Command

DTM Telemetry

DTK Tracking

DMC Monitor

DTT Test and Training

72

CMF Communications Monitor
and Formatter
DST Host

The subsystems are broken down by size in Table 1.

The effects of the methodology on a single subsystem were
studied in detail and the results, with corroboration from a
second subsystem, were extrapolated for the entire effort. In
addition to this quantitative evaluation of the MDS imple-
mentation, a qualitative evaluation by cognizant software
engineers is included at the end of the report.

Il. Software Methodology

At the start of the MDS Project most of the Standard Prac-
tices governing software implementation had been formulated
but were as yet unpublished. However, the concepts governing
the methodology were well known and interim documents
were published to guide software implementation. The princi-

pal concepts used in the MDS software effort and implied by
the term “methodology” in this report are:

(1) Structured Programming.
(2) Top-down Development.
(3) Visibility Reporting.

(4) Management Reviews.

(5) Documentation.

lll. Impact of Methodology on the
Command Subsystem

The Deep Space Station Command Subsystem (DCD) was
chosen as a representative system for the MDS for the follow-
ing reasons:

(1) The DCD software was of the “average” size of the
MDS subsystem software.

(2) The DCD was the best documented subsystem in terms
of statistics gathered during the project lifetime under
study.

(3) The DCD development team most closely adhered to
the methodology.

Several important milestones should be noted that occurred
during the Command subsystem implementation and repre-
sented application of the methodology. These milestones
were:

The Software Requirements Document

(SRD) published for DCD 3/3/75
The Software Definition Document

(SDD) published forDCD 9/19/78
DCD High-Level Design Review 11/13/75
MDS System Level Review 3/13/76
Work Breakdown Structure

(WBS) Methodology applied 4/1/76
Monthly Management Reporting started 5/1/76
Weekly Reports 9/8/76

The impact of these milestones will be discussed.
A. Visibility

Application of the methodology resulted in a series of mile-
stones that were designed to increase management visibility.

Visibility was indeed increased; an example is found in the
management of the subsystem delivery date. The SRD

reported an estimated delivery date of 1 August 1976. By the
time the SDD was published, six months later, the estimated
delivery date had slipped one month. Six months later, at the
MDS System Level Review, a further slip of two months for
the estimated delivery date had occurred. The successive slips
of estimated delivery date can be projected (see Fig. 1). This
projection is nonlinear and, as the desired delivery date is
approached, the number of slips tends to increase. This slip
in estimated delivery date was typical for all subsystems, but
is illustrated only for the DCD.

It was possible because of the visibility to determine seven
months in advance of the need date that the actual delivery
date of the software was slipping. Increased visibility plus the
application of the WBS methodology allowed the splitting of
the effort into two phases. The software necessary to meet
first priority requirements was identified and that portion of
the software was delivered as a first phase, thereby pulling the
delivery date back to the need date. Without corrective action,
delivery would have taken place four to five months late.

B. Anomalies

Anomalies were not originally reported for all subsystems
and original published anomaly reports do not reflect the DTT
or DST subsystems. For the MDS, approximately 200 anoma-
lies were reported at verification time and during acceptance
testing at CTA 21. After acceptance testing, approximately
90 more were uncovered.

For the DCD, 77 anomalies were reported during verifica-
tion testing and acceptance testing, and 43 after acceptance
testing. While the anomaly curve for the DCD presents the
typical curve exhibited for the MDS (Figs. 2 and 3), it can
easily be determined that the rate is approximately twice that
for the project as a whole.

Possible causes for this phenomenon could be:

(1) The software was not ready for delivery.

(2) Reporting of preacceptance test anomalies was more
comprehensive than for other subsystems.

(3) The software was more difficult.

(4) The software was considered more crucial to flight
operations and therefore more rigorously tested.

(5) The methodology does not affect the number of
anomalies.

Close investigation shows that reasons (2) and (4) are
probably the true reasons for this phenomenon. It has already
been mentioned that the DCD was tHe best documented sub-
system and team members adhered most closely to the meth-

73

odology, and therefore were more meticulous about reporting
errors during the verification phase. Extensive performance
test programs were written that exercised the software
extensively.

Even at the rate of 4.8 errors per 1000 lines of code prior
to delivery, the DCD software compares favorably to the
industry average of 18 per 1000 lines of code (see Refs. 2, 3,
4).

C. Implementation Cost

One measure of the effectiveness of a programming meth-
odology is the productivity rate in delivered lines of source
code per man-month (LOC/mm). An industrial average pro-
ductivity rate is available for projects produced without the
elements of the software methodology. For a comparison, it
is desirable to determine the corresponding productivity rate
for the Command Subsystem.

It is felt that for a fair comparison, only equivalent activi-
ties should be included in the productivity measure. Thus,
included in the Command manpower measure is the direct
effort associated with technical manpower, derived not from
the System for Resource Management (SRM), but as a direct
translation of time expended by personnel in the various tasks
associated with software implementation such as designing,
coding, testing, and documentation. The time spent by engi-
neering personnel on documentation is included but not the
costs of support people, reproduction, and other costs
involved in the production of the documents themselves.
Time expended was derived primarily from the DCD Opera-
tional Software Development Schedule and Manpower Alloca-
tion Chart.

Figure 4 represents the manpower loading of the DCD
during the time span under discussion. Studies of available
data from industry (Refs. 5 and 6) indicate that an average of
3.2 persons per month (200 LOC/mm) should have been
utilized to produce the necessary code. Instead only an average
of 2.7 (237 LOC/mm) persons were employed. Over the
25-month period, a cost savings of 1 person was achieved, or
approximately $50,000 for one subsystem.

A second subsystem was studied to corroborate the pro-
ductivity gains found in the Command Subsystem. The Com-
munications Monitor and Formatter (CMF) was chosen and
the CMF man-power loading is shown in Fig. 5. Again, based
on an industry productivity average of 200 lines of code per
month (Refs. 5 and 6), the savings were 17.3 man months.

The increase in productivity can be considered significant

for both subsystems because it exceeds one standard devia-
tion from the mean. The result reinforces the belief that

74

small but significant direct implementation cost savings were
obtained with the use of the software methodology.

IV. Software Development Period

The development period of 25 months used to develop
cost estimates is an extremely conservative one consisting of
starting where the first known manpower could be attributed
to the project. There are many valid and cogent reasons why
a later date may be taken. The implementation schedule
(Fig. 6) published at the High Level Design Review shows a
start date for software implementation at approximately
January 1975. If this date is taken as the start of the develop-
ment period then the following productivity figures can be
derived:

DCD
CMF

256 LOC/month
274 LOC/month

The savings would then be:

DCD
CMF

17.4 man/months
23.3 man/months

or approximately $167,000 for just the two subsystems.

V. Documentation

As stated previously, the productivity measure includes
engineering time spent on design, code, testing, and docu-
mentation, but does not include special documentation
support required by the software methodology. For the MDS,
documentation support was provided by the Software Produc-
tion Management and Control (SPMC) center, and is discussed
below.

Despite the methodology requirements to produce docu-
mentation before or at least concurrent with code, the delivery
of formal, validated documentation has consistently lagged
behind transfer of the code. This lag has, for many subsystems,
been as long as a year and is partially due to the volume of
documentation produced.

Walston and Felix of IBM (Ref. 7) predict on the basis of
46 software projects of varied purposes and methodologies,
that about 800 pages of documentation is produced for a
subsystem the size of Command. The values for one standard
deviation are 400 pages and 1250 pages of documentation.
The Command Subsystem produced at least 1600 pages
(Table 2). This value is higher than the average found by IBM,
and indicates that the methodology results in a higher volume
of documentation.

Extrapolation of information supplied by DSN Data
Systems indjcates that documentation support! for the DCD
cost $69,000. This is slightly more than the productivity gains
shown in Section III, and does not include costs incurred after
the time-span of this study. Although the documentation cost
is negating productivity gains in the implementation phase,
these costs should be offset in the maintenance phase. In the
absence of hard data, the cost and volume of documentation
required by the methodology is being analyzed.

VIi. Maintenance Phase

Unfortunately, the maintenance and operations phase of
the MDS system has just begun, so there is no quantitative
cost data. Nevertheless, two pieces of information indicate
that maintenance of the software will be less costly per LOC
than previous projects. First, though given extensive testing,
the number of anomalies was low. Secondly, another project
produced concurrently with the software methodology
showed increased software maintainability. There is no reason
to expect a decrease in maintainability, and every reason to
expect an increase with the use of the software methodology.
Thus, it is predicted that there will be additional savings during
the maintenance phase of the MDS.

Vil. Conclusions from Quantitative Study

The major quantitatively measurable benefits derived from
the methodology discussed in this report appear to be three-
fold:

(1) The ability to deliver software on time by providing
greater visibility and allowing management to inter-
vene before projected slips actually impact delivery
schedule.

(2) A lower anomaly rate than the reported industry
average, which indicates better software and predicts
decreased maintenance costs.

(3) Small but significant cost savings in manpower result-
ing in lower implementation costs. These savings will
increase as the documentation problem is addressed.

'Documentation support, as used here, is defined as all the support
functions performed by the SPMC for the Command Subsystem.
Thus, included in the $69,000 figure are the following: documenta-
tion production, editing, and reproduction costs; computer operator
costs for disk generation, job runs, source code updating, disc prepara-
tion, operating system copies, and module assembly ; and code support
costs such as the maintenance of the code library.

VIIl. Qualitative Evaluation—Benefits

In addition to the quantitative evaluation of the software
methodology, a qualitative study was performed using inter-
views and questionnaires of cognizant software individuals.
Qualitative, rather than quantitative, evaluations were sought
for several reasons. Record-keeping is a part of the methodol-
ogy, but quantitative data are often unavailable for older pro-
jects. It is also difficult to obtain numeric information from
people recalling old projects; often those who directed old
projects are no longer at JPL, and data from memory may not
be sufficiently accurate for a valid comparison. Thus, the
best information to be gained from these individuals is
qualitative.

A specific questionnaire and open discussion format were
used in the interview process. The programmers and managers
were also asked to relate their experiences on projects con-
ducted prior to addition of the software methodology, and
specify areas in which the methodology would have been
beneficial. The results of the interviews show a number of
common impressions and experiences, which are discussed
below.

The primary problem observed in older software projects
was a failure to transfer to operations on schedule. Often
accompanying this overrun in schedule was an overrun in
budget. With these two conditions, and pressure to transfer as
soon as possible, documentation suffered and maintenance was
difficult once transfer was achieved. The people interviewed
noted a number of causes that produced this condition.

The first was the general difficulty in accurately predicting
task complexity, required resources, and the final amount of
code. Cost and schedule overruns occurred and some incom-
patibilities with hardware resulted. This problem not only
affected past DSN projects, but still affects the software
industry as a whole. Nevertheless, it is felt that the meth-
odology’s requirements for modularization and Work Break-
down Structure, with a strong emphasis on design, strongly
support better schedule, cost, and resource planning.

A second cause of overruns noted by the software per-
sonnel was frequent changes in requirements. This instability
disrupted schedules and necessitated numerous releases and
transfer liens. The software methodology addresses this
problem by formalizing the requirements process and enforc-
ing approval of requirement changes.

Occasionally noted was the condition in which the project
was due for transfer and management then learned it was far
from complete. Management had not adequately monitored

75

the progress of the project. Again, a benefit of the methodol-
ogy is that it includes the Work Breakdown Structure, design
reviews, and formal milestones, which all address the monitor-
ing of project progress.

The software projects discussed in the interviews all had
late and/or insufficient documentation, and major transfer
liens were frequent against these documents. Numerous prob-
lems resulted: the project was delayed, new personnel found it
difficult to work on the software, or testing and debugging
required excessive resources. It is felt that the concurrent
documentation and design review requirements of the meth-
odology certainly ease these problems. Nevertheless, some
documentation is still late. This is partly attributed to flow-
charts that sometimes require as long as a month for machine
production. By that time, they must often be resubmitted to
include changes that occurred during that month. A faster
method of documentation production was strongly suggested
by the software personnel.

The final cause of project overruns brought out in the
interviews was excessive errors in the software. Either major
pretransfer testing was required, or numerous bugs were found
after transfer. Neither case is desirable. The personnel inter-
viewed felt the modularization, emphasis on design, and
formal testing incorporated in the methodology result in less
testing, fewer anomolies, and easier debugging.

In summary, projects in the past have often encountered
difficulties with schedules and resources, specification changes,
management visibility, documentation, and testing. The DSN
Software Methodology provides a good structure with which
to control these problems.

IX. Qualitative Evaluation—
Suggested Improvements

In addition to benefits resulting from the software meth-
odology, the software people suggested the following meth-

76

odology improvements that would produce even more cost-
effective software:

(1) The methodology requirements are occasionally not
applicable to a specific project, and obtaining a waiver
requires time. Perhaps, with a growing experience in
using the methodology, a list of requirements by
project size, cost, and type could be developed.

(2) The projects still find themselves caught between
documentation requirements and the scheduled trans-
fer date. Part of the problem is felt to lie in the slow
turnaround time for finished documentation. Also,
the requirement of low-level flowcharting results in
a great deal of production and revision time. It is
suggested that either (a) only higher-level flowcharting
be required, (b) a program design language tool be used
in place of flowcharts, or (¢) a quick method of flow-
chart production be found. In all, the software per-
sonnel feel that flowcharting currently requires that
the programmer cater to the machine, rather than the
reverse.

(3) The inclusion of programmers, operators, Cognizant
Development Engineers (CDEs), and customers in the
requirements and broad design process should be
encouraged even more than is currently done.

(4) Too much emphasis is given to the quantity of
response to the methodology rather than the quality
of the response. An effort should be made to deter-
mine levels of quality based on maintainability and
error rate after transfer.

(5) The methodology can help standardize the develop-
ment of software and control the flow of projects,
but it cannot force a bad manager or programmer into
good performance. A key also lies in the people who
perform the job.

References

. Standard Practices for the Implementation of Computer Software, edited by A.P.
Irvine, JPL Publication 78-53. Jet Propulsion Laboratory, Pasadena, Calif. Septem-
ber 1, 1978,

. Michael E. Fagen, Design and Code Inspections and Process Control in the Develop-
ment of Programs, IBM Technical Report TR 21.572, Dec. 17, 1974,

. J. C. Kickson, et al,, “Quantitative Analysis of Software Reliability,” Proc. 1972 IEEE
Annual Reliability and Maintainability Symposium, N.Y ., January 1972, pp. 148-157.

. M. L. Shooman, “Probabilistic Models for Software Reliability Prediction,” Proc. 1972
International Symposium on Fault-Tolerance Computing, Newton, Mass., June 1972,
pp. 211-215.

. Steve Caine, of Caine, Farber, and Gordon, Inc. Private Communication, Oct. 1976.

. Stephen R. McCammon, “Applied Software Engineering: A Real-Time Simulator Case
History,” IEEE Transactions on Software Engineering, Vol. SE-1, No. 4, Dec. 1975,
p. 383.

. C. E. Walston and C. P. Felix, “A Method of Programming Measurement and Estima-
tion,” IBM System Journal, No. 1, 1977, p. 62.

77

Table 1. Phase | delivered source lines of code

Subsystem Lines of code
DCD Command 16,000
DTM Telemetry 30,100
DTK Tracking 12,000
DMC Monitor 16,000
DTT Test and Training 2,100
CMF Communications Monitor and Formatter 17,700
DST Host 5,000
Total lines of code? 98,900

4The Standard Operating System is not included in the total lines of
code. Size of the Standard Operating System is 16,500 lines of code.

Table 2. Amount of documentation for the Command Subsystem

Document Number of pages
Project Notebook 154
Software Requirements Document 43
Software Definition Document 123
Software Specifications Document?® 780
Software Operations Manual® 140
Software Test and Transfer Document® 250
Anomaly Reports 127
Total Documentation 1617 Pages

aAmount of documentation was estimated because there was no for-
mal, published document during the time-span under study.

CUMULATIVE NUMBER OF ANOMALIES

120

110

100

90

80

70

60

50

40

30

20

ACTUAL MILESTONES

SRD PUBLISHED.

SSD PUBLISHED

1975

HLDR TAKES PLACE

MDS SYSTEM LEVEL REVIEW.._...

P~ACTUAL SLIPS IN
ESTIMATED DELIVERY
DATE

APPLIED

WBS METHODOLOGY

3\

1st MONTHLY MANAGEMENT REPORT.

PROJECT CHRONOLOGY

\
\

ACTUAL TRANSFER

Ist WEEKLY MANAGEMENT REPORT....

1976
o[z[o[eP[-[-[EF[E[-[-[olz]o]~[>[-[-[z[>[Z]{-

!
I
!
!
!
|

RESULTS IN A
REDUCED PHASED
DELIVERY

A

\ PROJECTED SLIP IN
N LCTIMATED DELIVERY

DATE WITHOUT

CORRECTIVE ACTION

JTFIMIAIMJTI]AsTo[NTD

JIF[m]aIM{ s TATsTOINTD
1976

1977

ESTIMATED DELIVERY DATES

Fig. 1. Successive estimate history of DCD software delivery date

T t I T T T T L 1 T 1 T T
L VERIFICATION AND 4
ACCEPTANCE TESTING ’I
L / -
-~ —
L [~ TRANSFER 4
1 | l 1 L ! 1 L 1 1 1]
9/1 9/13 9/25 10/7 10/1910/3111/1211/24 12/6 12/18 12/30 1/11

DATE OF OCCURRENCE

Fig. 2. DCD software anomaly history

CUMULATIVE NUMBER OF ANOMALIES

300

250

150

50

9/1

VERIFICATION AND
ACCEPTANCE TESTING

9/|25 10/[19 n/|12

12{6

\TRANSFER

12/30
[

913 107 10/31 11/%
DATE OF OCCURRENCE

L
12/18 /11

Fig. 3. MDS software anomaly history

79

80

RESOURCES (MANPOWER)

RESOURCES (MANPOWER)

FY 75 FY 76 T | FY77
als [oIN[o[TFIM[AIMD (3 Tals[oIN[o[JTFIM[A[MIJ 1 Ta]s o]N]D
& i
5k i
44 i
3 i
2t 4
]_
|€— — — — 25-MONTH DEVELOPMENT PERIOD — ~— — — —|
0 RS WS N U WY S VS SN UUUNS NURE TR U TRNEAE N A VOUUNR PRI NN (NN N (NS TN GRS Ve S N W
Fig. 4. Command manpower loading profile
FY 75 FY 76 TP [FY77
Al SJOINID]J [FIM[AIM[J [JJATSJoINTD]JTFIM[aTMI s [3TAl s [OIN[D
= 4
5k J
4+ u
3F]
2k i
1]
lg— — — — 25-MONTH DEVELOPMENT PERIOD — — — — —p|
0 3 i1 1 1] L 1 1 L L L 1 1 1 1 L 1 1 1 1 L 1 1 i 1. 1 | 1

Fig. 5. CMF manpower loading profile

A¥IAITIA
1 ISVHJ

ainpayds uonejuswadun saw 9 ‘614

<
> —

asin
Ol
-

407

YIISNWVHL ANV L1S3L

mmﬂb ReR

EI¢E]

NOWNDNAOY¥d ANV NOISIa

NOILINIIIA NO1SIq ‘SLOIY ANV ONINNYd

JYMIIOS WILSASENS ONINIVIL ANV 1S3

(11Q)

el

ass

3d

JH} |

YIISNWVYL ANV 1531

2——
--O-
)
V|
e

ATH

[a]
(o)
ol

NOILONAOY¥d ANV NOIS3a

NOILINIFIQ N9OIS3d *SLDIY ANV ONINNY1d

ass

FAVMLIIOS WILSASENS TOYINOD ANV JOLINOW

(owa)

V| A

3G

40TH

YIISNVIL ONVY 1531

NOILDNAO¥d ANY NO1S3g

NOILINIZIC NOIS3Q ‘SLOIY ANV ONINNY1Y

tinan b o ol e
9

ad

YILLYWIOS ANV JOLINOW SNOILYDIINNWWO D

(VawD)

ads

YIISNVAEL ANV 1531

JAIH

NOILDONGOY¥d ANV NOISIa

NOILINI{3IA NOISIa ‘SLOIY ANV ONINNYJ

JIVMLIOS WILSASENS ONINOVIL

'1Q)

YIISNVIL ANV 1531

NOILONGOYd ANV N9OISIa

NOILINIIQ NOI1S3a 'SLOIE NV ONINNY 14

PVYMILIOS WILSASENS ANYWWOD

(a>q)

QT —
A — — —ORG~ ==

aas ()

YIISNVEL ANV 1531

RNJTH

NOILDNGO¥d ANY NOIS3Ia

NOILINIF3Q NOIS3d ‘SLDI ANV ONINNYI4

{1

RIeE]

JAYMLIOS WILSASENS A¥LIWITI)

(wiq)

JINAIHIS INIWHOTIAIA FHYMIH0S SaW

81

